INVASIVE LOBULAR CARCINOMA: THE CONCORDANCE OF PATHOLOGIC TUMOR SIZE WITH MAGNETIC RESONANCE IMAGING

Hatice Gümüş¹, Philppa Mills², Sue Jones¹, Peter Jones¹, David Fish¹, Metehan Gümüş³, Haresh Devalia³, Ali Sever²
¹Dicle Üniversitesi Tıp Fakültesi, Radyoloji Anabilim Dalı, Diyarbakır, Türkiye
²Maidstone Hospital, Radiology, Kent, İngiltere
³Maidstone Hospital, Surgery, Kent, İngiltere
¹Maidstone Hospital, Pathology, Kent, İngiltere

ABSTRACT

Purpose: The purpose of this study was to determine the adjunct value to mammography and ultrasonography of magnetic resonance imaging (MRI) in determining the presence, extend and multifocality of invasive lobular cancer (ILC).

Materials and methods: We retrospectively reviewed 38 ILC lesions that had been detected by mammography, ultrasonography, MRI and that had been diagnosed on the basis of histopathological analysis. The size, presence of multifocality and multicentricity of the tumors were recorded at imaging. The findings were compared with the final pathological size.

Results: The mean age of the patients was 63 (range; 45–85) years. All of the imaging modalities were performed on each patient. The sensitivity of the detection of ILC was much better with MRI (100%) compared to ultrasonography (95%) and mammography (84%). MRI identified multifocal tumor in seven patients (18.4%) and a contralateral tumor in one patient (2.6%), neither of which was identified with mammography and ultrasonography. MRI overestimated the tumor’s size in 11 tumors and underestimated the tumor’s size in three tumors. Ultrasonography overestimated the tumor size in three tumors and underestimated the tumor size in 18 tumors. Mammography overestimated the tumor’s size in two tumors and underestimated the tumor’s size in 17 tumors. The correlation of the tumor’s size on imaging with final pathology was better for MRI than for mammography and ultrasonography (p = 0.026).

Conclusions: MRI has better sensitivity of detection and correlation with ILC tumor size at pathology than mammography and ultrasonography. MRI is shown to be superior to mammography and ultrasonography in detecting multifocal and contralateral tumors.

Key words: carcinoma, lobular, cancer, mammography, ultrasonography, magnetic resonance imaging
Introduction

Invasive lobular cancer (ILC) is a neoplasm originating in the lobular epithelium of the breast. It is the second most common breast cancer and accounts for 5–15% of all breast cancers (1-5). ILC was first described by Foote and Stewart in 1941. They noted its unique growth patterns, which include a linear file arrangement of cells (so-called Indian file pattern) and scattered growth pattern (6,7). ILC has a tendency to spread diffusely or between the collagen fibers of the breast and produces little desmoplastic response (8). ILC is associated with a higher frequency of multifocal, multicentric, or bilateral breast cancer compared with other types of cancer (1,9).

Therefore, ILC often presents a diagnostic and a therapeutic challenge (1,10). Despite these diagnostic difficulties, imaging modalities are important in the preoperative evaluation of ILC.

At mammography (MG), ILC tends to manifest as lesions with opacity equal to or less than that of normal fibroglandular tissue (11). Therefore, false-negative rates for ILC (up to 19%) are higher than for other invasive cancers detected via MG (2,12). Ultrasonography (US) is a valuable adjunct to MG for the detection of ILC. The appearance of ILC on US is frequently subtle and tends to manifest as focal shadowing without a discrete mass (11). In particular, the detection of ILC on US may be difficult for lesions smaller than 1 cm (12,13). As the mammographic and the sonographic appearance of ILC are frequently subtle, these modalities will not always detect the full extent of the tumor. MG and US are associated with lower sensitivities for detecting ILC (1-3,14).

Magnetic resonance imaging (MRI) is increasingly used for the detection of invasive breast cancers. In recent years, MRI has proved to be a useful adjunct to MG and US in the detection and management of ILC. MRI is a promising method for preoperative staging of breast cancer to exclude multifocality or multicentricity. Moreover, the additional screening by MRI of the contralateral breast may be useful, with some investigators reporting that MRI, together with MG and US, resulted in sensitivities reaching 100% in the detection of invasive breast cancer (9,10,15).

Due to the lower incidence of ILC, few studies have looked at the efficacy of MRI for the detection of ILC, preoperative estimation of size, and concordance with final pathology. The purpose of this study was to determine the adjunct value to mammography and ultrasonography of magnetic resonance imaging (MRI) in determining the presence, extent and multifocality of invasive lobular cancer (ILC).

Materials and methods

We retrospectively reviewed images from 38 patients with a mean age of 63 years (45–85) who had been diagnosed with ILC histopathologically between May 2009 and February 2011. Patients with associated ductal carcinoma were excluded from this study. In line with our unit policy, MRI was performed after ILC had been diagnosed histopathologically. The imaging and reporting data were collected from PACS. All of the patients underwent surgery. The size of the tumor and the presence of multifocality or a bilateral tumor at imaging and reporting were recorded. In cases of widespread multifocal disease, the largest lesion was measured. The pathological size was considered the gold standard for comparison. Concordance occurred when the size of the measured lesion on imaging was within 0.5 cm of the size on the final pathology. In line with our Trust’s policy no ethics committee approval was obtained as this was a retrospective survey and no patients were individually identified.

MRI

MRI of the breast was performed with a 3-T system, with a dedicated dual breast coil. The patients were imaged while in the prone position and with the breast slightly compressed. First, an axial T2-weighted turbo spino-echo sequence (TR/TE, 5200/90 msec, slice thickness, 4 mm) was acquired. Then, an axial and sagittal T1-weighted flash three-dimensional sequence (TR/TE, 19/7 msec; matrix, 256x256; field of view, 30 cm; slice thickness, 4 mm) was used for dynamic contrast enhancement in all of the examinations. In the initial phases of the dynamic exam, axial and sagital images were obtained without contrast. Intravenous (IV) contrast material (gadopentetate dimeglumine) (0.2 mmol/kg IV bolus) was then injected. Each field of view was scanned seven times. The sagittal images were obtained before and after the administration of the contrast material. To detect any contrast enhancement, subtraction images were obtained by subtracting the no-contrast images from the dynamic early- and late-phase contrast images. The images were reviewed by two specialist breast radiologists.

Mammography

All cases were examined with a technique using full-field digital mammography. Craniocaudal and mediolateral oblique rejections of bilateral breasts were obtained. Additional spot compression and magnification views were obtained some cases. The mammographic images were reviewed by two specialist breast radiologists.

Ultrasonography

All the sonographic examinations were performed by two specialist breast radiologists using high resolution sonography with the patient placed in the supine or oblique supine position. Scans were performed using a high frequency probe operating at 8–10 MHz.

Statistical analysis

The correlation between the pathological size and the size on imaging was measured by Pearson’s correlation coefficients for each diagnostic modality. All of the data were analyzed by SPSS analytical software.

Results

Sensitivity

All of the tumors were visualized by MRI. US failed to detect two tumors (5.3%), and MG did not detect six tumors (15.8%). The sensitivity of detection of ILC was much better with MRI (100%) compared with US (93%) and MG (84%). Twenty-two of the patients underwent lumpectomy, and 16 of the patients underwent mastectomy.
Concordance, overestimation, and underestimation

The MRI tumor size was concordant (within 0.5 cm) with the pathological tumor size in 24 (63.2%) of the patients. The concordance for lesions of ≤2 cm at pathology was 12 of 16 (75%) patients, and the concordance for lesions of >2 cm was 12 of 22 (54.5%) of the patients. MRI overestimated the size of the tumor by more than 0.5 cm in 11 of the patients (28.9%) and underestimated the tumor’s size by more than 0.5 cm in three (7.9%) of the patients. The mean size of the tumor was 37 mm (10–172) in the concordant group, 29.4 mm (8–60) in the overestimated group, and 50.3 mm (30–90) in the underestimated group by MRI.

The tumor’s size on MG was concordant (within 0.5 cm) with the pathological tumor size in 13 (34.2%) of the patients. MG overestimated the tumor’s size by more than 0.5 cm in two of the patients (5.3%) and underestimated the tumor’s size by more than 0.5 cm in 17 of the patients (44.7%). The mean size of the tumor was 18.7 mm (8–30) in the concordant group, 13 mm (13–13) in the overestimated group, and 57.8 mm (17–172) in the underestimated group by MG.

The tumor’s size on US was concordant (within 0.5 cm) with the pathological tumor size in 15 (39.5%) of the patients. US overestimated the size of the tumor by more than 0.5 cm in three of the patients (7.9%) and underestimated the size of the tumor by more than 0.5 cm in 18 (47.4%) of the patients. The mean size of the tumor was 36.7 mm (10–172) in the concordant group, 14.3 mm (8–18) in the overestimated group, and 48.3 mm (17–100) in the underestimated group by US.

Contralateral tumor

MRI identified a contralateral tumor in one patient (2.6%) that was not detected by MG or by US (Figure 4a,b,c,d). Subsequent US detected the tumor recognized by MRI, and US-guided core needle biopsy was performed. The results of the biopsy showed contralateral primary ILC in this patient. The patient underwent a bilateral mastectomy.
Discussion

In making a choice about surgical treatment, it is important to have an accurate definition of the extent of the cancer or bilateral cancer (16). The preoperative evaluation of the tumor’s size and the detection of multifocal tumors can influence the choice of surgical treatment. In particular, an accurate estimation of the extent of invasive cancer is essential to determine eligibility for breast conservation therapy. The goal is to perform a resection with negative margins and, thus, minimize the risk of local tumor recurrence. Imaging modalities are important in the preoperative evaluation of ILC.

The sensitivity of MG and US for ILC detection was reported to be 57–90.5% (1,3,14,17-19,) and 68–98% (14, 17-20), respectively. The sensitivity of MG (84%) and US (95%) in this study are in accord with the findings reported in the literature. The use of MRI as an adjunct to MG and US increases sensitivity in the detection of ILC and provides useful information for presurgical planning. Some investigators have reported that MRI is a useful addition to MG and US, with sensitivities reaching 100% in the detection of invasive breast cancer (9,10,15,17,18,21). In this study, the sensitivity of MRI was 100%.

In a study of ILC, McGhan et al (17) reported a concordance rate of 56% between MRI and the pathological size. We detected a rate of 63.2% in our study. Grimsby et al reported (22) that the MRI pathological concordance rate for tumors less than 2 cm for both ILC and invasive ductal carcinoma was higher in lesions >2cm (69% and 46%, respectively). McGhan et al (17) found the MRI pathological concordance rate for tumors ≤2 cm for ILC was higher than for those >2 cm (63% and 42%, respectively). In this study, the MRI pathological concordance was consistent with previous reports, demonstrating better concordance with ≤2 cm tumors (75%, 54.5%).

For ILC, the correlation between MRI and size on pathological analysis has been reported to range from 0.74 to 0.97 (17, 18, 21, 23, 24). In comparison, correlations for MG and US have been reported to be as low as 0.34–0.79 (17,25,21,23-25), respectively. In our study, the correlations for MRI, MG, and US are consistent with those reported in the literature. As MRI uses both morphological and enhancement kinetics to evaluate cancer, it provides a more accurate estimation of the size of the tumor.

MG tends to underestimate the tumor size compared with US. However, overestimation of the tumor size by MG and US is rare. For example, Uchiyama et al. (26) and Veltman et al. (27) reported that 56% and 35–37%, respectively, of ILC on MG were underestimated. US tends to underestimate larger tumors more so than smaller tumors (28). Our results are in accordance with the findings reported in the literature.

Multifocal tumors

MRI identified multifocal tumors in seven (18.4%) of the patients; these tumors were not detected by MG or US. Due to the increase in stage, the therapeutic procedure was changed from lumpectomy to mastectomy in six of these seven patients. The results of the final pathology showed multifocal ILC in these seven patients.

Correlation coefficients

The correlation of the measured tumor size with the size on final pathology measured by the Spearman correlation coefficient was the best with MRI ($r = 0.837$) ($p = 0.0001$) compared with MG ($r = 0.675$) ($p = 0.0001$) and US ($r = 0.361$) ($p = 0.026$) (Figure 1,2,3).
In cases of multifocal breast cancer or where women have dense breast tissue, conventional imaging may miss an unsuspected invasive breast cancer. Due to its very high sensitivity, MRI is a particularly useful imaging technique for staging women diagnosed with ILC, especially those women with very dense breast tissue and multifocal cancer. MRI has been shown to be superior to MG and to US in detecting multifocality and multicentricity, as well as in estimating the tumor’s size, which tends to be underestimated with conventional imaging. The additional screening by MRI of the contralateral breast may be useful. MRI has been shown to affect clinical management in 50% of patients with ILC, leading to changes in surgical management in 28% of cases (21,25).

In conclusion, MRI has better sensitivity in the detection of ILC and shows better correlation with the tumor’s size in ILC at pathology compared with MG or US. MRI has been shown to be superior to MG and US in detecting multifocal and contralateral tumors. MG vs US tends to underestimate the tumor’s size. The use of MRI as an adjunct to MG and US is important in the preoperative evaluation of ILC.

References