Myofibroblastoma of the breast is an uncommon benign tumor. It is more common in men. In this report we present a case of an 65 year old male patient presenting with a firm breast lump diagnosed as myofibroblastoma and confirmed by diffuse positivity of CD34 immunohistochemical stain. Our patient had radical orchiectomy surgery about four years previously and he received estrogen therapy. Therefore, he had bilateral gynecomastia. The breast lump had grown in the previous four years, also. To the best of our knowledge, only one case of myofibroblastoma arising in a context of bilateral gynecomas-tia has been reported in the literature.

Key words: Myofibroblastoma, male, breast, ultrasonography

Case Report
A 65 year-old-male patient presented with a complaint of a painless breast lump located in the lower inner-quadrant of the left breast. The lesion was firm and mobile on physical examination, there were hyperemia and multiple telangiectasies on the skin covering the lesion. No axillary lymph nodes were palpable and his body temperature was normal. He had bilateral gynecomastia. Four years earlier, he underwent radical prostatectomy followed by bilateral orchiectomy, for prostate cancer. The patient received hormonal therapy (double combination of an LH-RH analog: goserelin, antiandrogen:finasterid) for fourteen months. He reported the lump had grown rapidly after the hormonal therapy. His past medical history included type 2 diabetes mellitus, COPD, hypertension, and ischemic heart disease. The family history was unremarkable.

A chest Computed Tomography (CT) scan (taken for a chronic cough) revealed a 7x4.5 cm, ovoid, non-enhancing, well-demar-cated solid mass (Figure 1A). Bilateral gynecomastia with dendritic pattern was seen on coronally reformatted images (Figure 1B). Ultrasound (US) examination revealed a 73x41x46 mm, homogeneous hypoechoic, well-demarcated solid mass. The mass had no identifiable capsule or cystic component (Figure 2A). Color doppler imaging showed no vascularity in the mass except for low-velocity venous flow in one focus (Figure 2B). US-guided tru-cut biopsy was carried out for a definite histological diagnosis. Histopathological examination revealed that the lesion was composed of hypercellular spindle-shaped cells with interspersed broad bands of collagen (Figure 3A). Immunohistochemistry was strongly positive for CD34 (Figure 3B), estrogen, positive for desmin and smooth muscle actin, and negative for S100 and keratin. Conclusive diagnosis of

Aynur Solak1, İlhami Solak2, Berhan Genç1
1Department of Radiology, Şifa University Hospital, İzmir, Turkey
2Department of General Surgery, Faculty of Medicine, Ege University, İzmir, Turkey

Revision Date/Revizyon Tarihi: 14.02.2012 • Accepted Date/Kabul Tarihi: 19.03.2012
myofibroblastoma was made based on the above findings. After one year follow-up period, the patient remains well. The sizes and configuration of the mass remained unchanged.

Discussion
Breast myofibroblastoma is an extremely rare, benign, slow-growing mass, usually solitary and unilaterally located. It commonly occurs in the fifth-sixth decades in men. Its incidence among women has increased with the use of mammographic-screening (6, 7). Mammography usually shows an ovoid shaped, well-circumscribed benign lesion, without evidence of pathologic microcalciﬁcation. On ultrasonographic examination the lesion appears as a homogeneously hypoechoic solid, sometimes contains cystic spaces, without a capsule formation. It has poor vascularity (5, 8-10). The sonographic features of our patient’s lesion were similar to the findings reported in the literature. It was similar to a fibroadenoma. Color doppler ultrasound examination showed no vascularity except for a peripherally located low-velocity venous flow. Normal male breast tissue may contain ductuli and lobuli. Development of a fibroadenoma in it is not possible due to lack of lobular unit. Sometimes lobular transformation may be seen as a result of long-term estrogen therapy. Rarely, fibroepithelial lesions such as a fibroadenoma and phylloid tumor can be seen in these patients (11, 12). Based on radiological ﬁndings, we thought that our patient’s mass was more likely a fibroma, it was less likely a fibroadenoma due to estrogen therapy. We never considered the possibility of malignancy in the first place. Histological evaluation of the lesion showed no glandular breast tissue.

Pathological examination of the biopsy sample is the only deﬁnitive diagnostic method for myofibroblastoma due to the non-speciﬁc radiological ﬁndings described above (4, 6, 13). Myofibroblasts are benign stromal cells that can be found in different places in the body, even in the skin, meninges, pleura, lymph nodes and they

![Figure 1](image1.png)
Figure 1. a) Axial CT scan (mediastinal window level) reveals a well-demarcated, homogeneous solid mass lesion in the left breast. b) Coronal reconﬁgured image shows bilateral gynecomastia and the lump in the same section.

![Figure 2](image2.png)
Figure 2. a) Ultrasound examination shows a 73x46x41 mm in diameter, homogeneous hypoechoic, solid mass without capsule formation. b) Color Doppler Imaging shows low-velocity venous ﬂow in the mass.
have been found to be responsible for wound contraction. These cells, that contain characteristic features of smooth muscle and fibroblasts, were typically interspersed thick bands of collagen. Lack of mitotic activity (or rare), anaplasia and cellular atypia are the essential features in the differential diagnosis between malignant stromal tumor. In immunohistochemical staining, positivity for CD34 and desmin, negativity for S100 and cytokeratin confirm the diagnosis (2-4, 14-16). In our patients’ histopathological specimen, hypercellular spindle shaped cells (myofibroblasts) separated by broad collagen bands were seen. The mass was strongly positively stained with CD34 (Figure 3 A, B).

Leiomyoma, due to its close location to the areola and schwannoma with radiological findings of benign soft tissue tumors, should be considered in the differential diagnosis. Leiomyomas are usually localized in the retroareolar region, well-defined nodular lesions. Schwannoma cells sometimes may resemble a myofibroblastoma morphologically. They can be distinguished only by immunohistochemical staining (schwannoma has strongly positivity for S100) (13, 16, 17).

Myofibroblastomas are slowly growing lesions that rarely exceed 10 cm in size. It is thought that estrogen receptors play particularly important roles in their growth (2, 5, 9). In our patient, growth of the estrogen receptor-positive mass has been accelerated due to hormonal therapy. Gynecomastia also occurred after hormonal therapy. There have been only a few cases of myofibroblastoma associated with gynecomastia reported in the literature. However, the exact cause of this association was disclosed (18).

Total excision of the lesion is the correct treatment. If the growth of the lesion stops, it can be monitored clinically since there is no risk of malignant transformation (18-20). Our patient was called twice with 6-month intervals for control examination. We detected no change in the size and configuration of the mass.

In conclusion, in the diagnosis of slowly growing, firm, mobile and well-defined male breast lesions which have all findings closely similar to fibroadenoma except for the lack of capsule, myofibroblastoma must be considered primarily. The differential diagnosis includes schwannoma, leiomyoma, fibroma, less likely fibroepithelial tumors. Definitive diagnosis can be made only by immunohistochemical methods.

Conflict of interest
No conflict of interest was declared by the authors.

References

